Ditector Inverting Dengan Vref = 0

Detektor inverting dengan Vref = 0
Aplikasi Pendeteksi Benda Hilang Jenis Logam
Menggunakan Sensor Magnet, Sensor Infrared, dan Sensor Suara


1. Tujuan [kembali]

1. Mengetahui prinsip kerja rangkaian detektor inverting dengan vref=0.
2. Mengetahui komponen yang digunakan dalam membuat rangkaian pengaplikasian opamp yaitu alat pendeteksi benda hilang jenis logam menggunakan sensor magnet, sensor infrared, dan sensor suara
3. Mengetahui bentuk rangkaian dan mensimulasikan pengaplikasian opamp pada software proteus.

2. Alat dan Bahan[kembali]

ALAT

Instrument

1) DC Voltmeter

DC Voltmeter merupakan alat yang digunakan untuk mengukur besar tengangan pada suatu komponen. Cara pemakaiannya adalah dengan memparalelkan kaki2 Voltmeter dengan komponen yang akan diuji tegangannya.

Spesifikasi  

Generator Daya

1) Baterai 

Baterai merupakan sebuah alat yang mengubah energi kimia yang tersimpan menjadi energi listrik. Pada percobaan kali ini, baterai berfungsi sebagai sumber daya atau.
Spesifikasi dan Pinout Baterai
  • Input voltage: ac 100~240v / dc 10~30v
  • Output voltage: dc 1~35v
  • Max. Input current: dc 14a
  • Charging current: 0.1~10a
  • Discharging current: 0.1~1.0a
  • Balance current: 1.5a/cell max
  • Max. Discharging power: 15w
  • Max. Charging power: ac 100w / dc 250w
  • Jenis batre yg didukung: life, lilon, lipo 1~6s, lihv 1-6s, pb 1-12s, nimh, cd 1-16s
  • Ukuran: 126x115x49mm
  • Berat: 460gr
2) Power Suply

Berfungsi sebagai sumber daya bagi sensor ataupun rangkaian. Spesifikasi :

  • Input voltage: 5V-12V
  • Output voltage: 5V
  • Output Current: MAX 3A
  • Output power:15W
  • conversion efficiency: 96%

BAHAN

1) Resistor

Resistor adalah komponen Elektronika Pasif yang memiliki nilai resistansi atau hambatan tertentu yang berfungsi untuk membatasi dan mengatur arus listrik dalam suatu rangkaian Elektronika (V=I R). Jenis Resistor yang digunakan disini adalah Fixed Resistor, dimana merupakan resistor dengan nilai tetap terdiri dari film tipis karbon yang diendapkan subtrat isolator kemudian dipotong berbentuk spiral. Keuntungan jenis fixed resistor ini dapat menghasilkan resistor dengan toleransi yang lebih rendah.
Cara membaca nilai resistor

Contoh :
Gelang ke 1 : Coklat = 1
Gelang ke 2 : Hitam = 0
Gelang ke 3 : Hijau   = 5 nol dibelakang angka gelang ke-2; atau kalikan 105
Gelang ke 4 : Perak  = Toleransi 10%
Maka nilai resistor tersebut adalah 10 * 105 = 1.000.000 Ohm atau 1 MOhm dengan toleransi 10%

Spesifikasi

2) Dioda 
 Gambar, Simbol, dan Pinout Dioda

 Spesifikasi Dioda

 
Untuk menghantarkan arus listrik ke satu arah tetapi menghambat arus listrik dari arah sebaliknya. Oleh karena itu, Dioda sering dipergunakan sebagai penyearah dalam Rangkaian Elektronika. Dioda pada umumnya mempunyai 2 Elektroda (terminal) yaitu Anoda (+) dan Katoda (-) dan memiliki prinsip kerja yang berdasarkan teknologi pertemuan p-n semikonduktor yaitu dapat mengalirkan arus dari sisi tipe-p (Anoda) menuju ke sisi tipe-n (Katoda) tetapi tidak dapat mengalirkan arus ke arah sebaliknya.
3) Transistor
Gambar, Simbol, dan Pinout Transistor
Merupakan transistor tipe NPN yang digunakan untuk switching agar mengaktifkan kontak relay dan relay tersebut akan memberikan kontak pada motor DC dan output lainnya.

Spesifikasi :

Bi-Polar Transistor
DC Current Gain (hFE) is 800 maximum
Continuous Collector current (IC) is 100mA
Emitter Base Voltage (VBE) is > 0.6V
Base Current(IB) is 5mA maximum

4) Op Amp - LM741
Gambar LM741

Op-Amp adalah salah satu dari bentuk IC Linear yang berfungsi sebagai Penguat Sinyal listrik. Sebuah Op-Amp terdiri dari beberapa Transistor, Dioda, Resistor dan Kapasitor yang terinterkoneksi dan terintegrasi sehingga memungkinkannya untuk menghasilkan Gain (penguatan) yang tinggi pada rentang frekuensi yang luas. Dalam bahasa Indonesia, Op-Amp atau Operational Amplifier sering disebut juga dengan Penguat Operasional.

Bagian-bagian dan Spesifikasi LM741


Komponen Input

1) Sensor Infrared

Sensor infrared berfungsi untuk mendeteksi jarak benda dari sensor dengan memanfaatkan gelombang elektromagnetik yang dipancarkannya.

Spesifikasi Sensor Infrared

 
Grafik respon Sensor Infrared

2) Sensor Magnet

Sensor magnet adalah sensor yang mudah terpengaruh dan peka terhadap medan magnet kemudian memberikan perubahan kondisi output. Prinsip kerja Sensor magnet yaitu akan aktif ketika konduktor mempengaruhi medan magnet, sehingga magnet tersebut tertolak atau tertarik sesuai dengan pengaruh konduktor yang diberikan. Disebut juga Relai Buluh adalah Alat yang akan terpengaruh Medan Magnet dan akan memberikan perubahan kondisi pada keluaran, seperti layaknya saklar dua kondisi (on/off) yang digerakkan oleh adanya medan magnet disekitarnya. Biasanya sensor ini dikemas dalam bentuk kemasan yang hampa dan bebas dari debu, kelembapan, asap maupun uap.

Cara Kerja Sensor Magnet
Sensor ini akan bekerja ketika jenis konduktor berada/mempengaruhi keberadaan medan magnet sehingga magent dapat tertarik atau tertolak sesuai pengaruh yang diberikan
3) Sound Sensor

Sensor suara merupakan module sensor yang mensensing besaran suara untuk diubah menjadi besaran listrik .Module ini bekerja berdasarkan prinsip kekuatan gelombang suara yang masuk. Dimana gelombang suara tersebut mengenai membran sensor, yang berefek pada bergetarnya membran sensor. Dan pada membran tersebut terdapat kumparan kecil yang dapat menghasilkan besaran listrik. Kecepatan bergeraknya membran tersebut juga akan menentukan besar kecilnya daya listrik yang akan dihasilkan. Spesifikasi dari sensor suara antara lain:

  •     Sensitivitas dapat diatur (pengaturan manual pada potensiometer)
  •     Condeser yang digunakan memiliki sensitivitas yang tinggi
  •     Tegangan kerja antara 3.3V – 5V
  •     Terdapat 2 pin keluaran yaitu tegangan analog dan Digital output
  •     Sudah terdapat lubang baut untuk instalasi
  •     Sudah terdapat indikator led
Respon frekuensi sound sensor
Respon frekuensi (frequency response) microphone didefinisikan sebagai rentang suara (dari frekuensi terendah hingga tertinggi) yang dapat dihasilkan dan variasinya di antara rentang tersebut.

Pada grafik diatas dapat disimpulkan bahwa makin tinggi frekuensi maka semakin tinggi tingkat sensitivitasnya, atau bisa dikatakan berbanding lurus.

4) Logicstate
Gerbang Logika (Logic Gates) adalah sebuah entitas untuk melakukan pengolahan input-input yang berupa bilangan biner (hanya terdapat 2 kode bilangan biner yaitu, angka 1 dan 0) dengan menggunakan Teori Matematika Boolean sehingga dihasilkan sebuah sinyal output yang dapat digunakan untuk proses berikutnya.

Bagian-bagian logicstate
Komponen Output

1) LED

Light Emmiting Diode atau sering disingkat dengan LED adalah komponen eletronika yang dapat memancarkan cahaya monokromatik ketika diberikan tegangan maju.

Spesifikasi :
  • Superior Weather Resistance
  • 5mm Round Standard Directivity
  • Uv Resistant Eproxy
  • Forward Current (If): 30ma
  • Forward Voltage (Vf): 1.8v To 2.4v
  • Reverse Voltage: 5v
  • Operating Temperature: -30℃ To +85℃
  • Storage Temperature: -40℃ To +100℃
  • Luminous Intensity: 20mcd
Tegangan LED menurut warna yang dihasilkan:
  • Infra merah : 1,6 V.
  • Merah : 1,8 V – 2,1 V.
  • Oranye : 2,2 V.
  • Kuning : 2,4 V.
  • Hijau : 2,6 V.
  • Biru : 3,0 V – 3,5 V.
  • Putih : 3,0 – 3,6 V.
  • Ultraviolet : 3,5 V.
2) Relay
Relay umumnya adalah tegangan input 5 VDC, 12 VDC atau 48 VDC. Untuk common dan NO NC umumnya 220 vac dengan arus kerja 10 A
  • Konfigurasi pin Relay dihubungkan ke 5V
  • GND dihubungkan ke GND
  • IN1/Data dihubungkan ke pin 2
Spesifikasi

3) Motor

Motor Listrik DC atau DC Motor adalah suatu perangkat yang mengubah energi listrik menjadi energi kinetik atau gerakan (motion). Motor DC ini juga dapat disebut sebagai Motor Arus Searah. Seperti namanya, DC Motor memiliki dua terminal dan memerlukan tegangan arus searah atau DC (Direct Current) untuk dapat menggerakannya. Motor Listrik DC ini biasanya digunakan pada perangkat-perangkat Elektronik dan listrik yang menggunakan sumber listrik DC seperti Vibrator Ponsel, Kipas DC dan Bor Listrik DC.

Spesifikasi

 Bagian-bagian motor

Grafik respon Motor

4) Ground


Pentanahan merupakan titik acuan yang biasa digunakan sebagai acuan titik potensial nol atau titik tegangan nol pada rangkaian elektronika. Fungsi ground meliputi:

Titik Referensi Tegangan: Ground berfungsi sebagai titik referensi umum yang digunakan dalam sirkuit elektronik. Ketika sinyal atau voltase diukur dalam suatu rangkaian, mereka diukur relatif terhadap titik pentanahan. Ini memungkinkan untuk menjaga konsistensi dan menghindari potensi mengambang yang dapat menyebabkan masalah di sirkuit.

Pengalihan Arus: Ground berfungsi sebagai jalur untuk pengalihan arus kembali ke sumber listrik atau sumber ground, terutama untuk rangkaian DC. Ketika arus mengalir melalui komponen, seperti resistor atau transistor, mereka mengalir dari sumber tegangan melalui jalur ground kembali ke sumber listrik.

Mengurangi Kebisingan dan Interferensi: Ground digunakan sebagai jalur untuk mengalirkan gangguan atau kebisingan yang mungkin muncul di sirkuit elektronik. Dengan menemukan jalur tanah yang tepat dan merancang jalur tanah yang bersih, kebisingan dan interferensi dapat diminimalkan, sehingga meningkatkan kinerja dan keandalan sistem elektronik.

3. Dasar Teori [kembali]

1. Baterai

Baterai atau elemen kering adalah salah satu alat listrik yang berfungsi sebagai penyimpan energi listrik dan mengeluarkan tegangan dalam bentuk listrik (sebagai sumber tegangan).

Pada umumnya baterai terdiri dari tiga komponen yang penting yaitu :

1. Batang karbon (C) sebagai anode (kutub positif baterai).
2. Seng (Zn) sebagai katode (kutub negatif baterai)
3. Amonium dioksida (NH4CI) sebagai larutan elektrolit (penghantar)

Terdapat dua jenis baterai yaitu :

1. Baterai Primer 

Baterai adalah baterai yang hanya dapat digunakan sekali, menggunakan reaksi kimia yang tidak dapat dibalik (irreversible reaction).  pada umumnya dijual adalah baterai yang bertegangan listrik 1,5 volt.

2. Baterai Sekunder

Baterai sekunder atau biasanya disebut rechargeable battery adalah baterai yang dapat di isi ulang menggunakan reaksi kimia yang bersifat dapat dibalik (reversible reaction) biasanya digunakan pada telepon genggam.

Adapun salah satu persamaan menghitung tegangan adalah :

P = V x I

Keterangan :

P  = Daya (W)

V = Tegangan yang terukur (V)

I   = Arus yang terukur (I)

2. Sensor Magnet (Reed Switch)

Sensor magnet adalah sensor yang mudah terpengaruh dan peka terhadap medan magnet kemudian memberikan perubahan kondisi output. Prinsip kerja Sensor magnet yaitu akan aktif ketika konduktor mempengaruhi medan magnet, sehingga magnet tersebut tertolak atau tertarik sesuai dengan pengaruh konduktor yang diberikan. Disebut juga Relai Buluh adalah alat yang terpengaruh Medan Magnet dan akan memberikan perubahan kondisi pada keluaran, seperti layaknya saklar dua kondisi (on/off) yang digerakkan oleh adanya medan magnet disekitarnya. Biasanya sensor ini dikemas dalam bentuk kemasan yang hampa dan bebas dari debu, kelembapan, asap maupun uap.

Cara kerja sensor magnet

Sensor ini akan bekerja ketika jenis konduktor berada/mempengaruhi keberadaan medan magnet sehingga magnet dapat tertarik atau tertolak sesuai pengaruh yang diberikan.

Infrared (IR) detektor atau sensor infra merah adalah komponen elektronika yang dapat mengidentifikasi cahaya infra merah (infra red, IR). Sensor infra merah atau detektor infra merah saat ini ada yang dibuat khusus dalam satu modul dan dinamakan sebagai IR Detector Photomodules. IR Detector Photomodules merupakan sebuah chip detektor inframerah digital yang di dalamnya terdapat fotodiode dan penguat (amplifier).

Prinsip Kerja Sensor Infrared

Gambar 1. Ilustrasi prinsip kerja sensor infrared

Ketika pemancar IR memancarkan radiasi, ia mencapai objek dan beberapa radiasi memantulkan kembali ke penerima IR. Berdasarkan intensitas penerimaan oleh penerima IR, output dari sensor ditentukan.

Gambar 2. Rangkaian dasar sensor infrared common emitter yang menggunakan led infrared dan fototransistor









Prinsip kerja rangkaian sensor infrared berdasarkan pada gambar 2. Adalah ketika cahaya infra merah diterima oleh fototransistor maka basis fototransistor akan mengubah energi cahaya infra merah menjadi arus listrik sehingga basis akan berubah seperti saklar (swith closed) atau fototransistor akan aktif (low) secara sesaat seperti gambar 3:

 

Gambar 3. Keadaan Basis Mendapat Cahaya Infra Merah dan Berubah Menjadi Saklar (Switch Close) Secara Sesaat

 

 

 Grafik Respon Sensor Infrared

Gambar 4. Grafik respon sensor infrared

Grafik menunjukkan hubungan antara resistansi dan jarak potensial untuk sensitivitas rentang antara pemancar dan penerima inframerah. Resistor yang digunakan pada sensor mempengaruhi intensitas cahaya inframerah keluar dari pemancar. Semakin tinggi resistansi yang digunakan, semakin pendek jarak IR Receiver yang mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih rendah dari IR Transmitter. Sementara semakin rendah resistansi yang digunakan, semakin jauh jarak IR Receiver mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih tinggi dari IR Transmitter.

4. Resistor

Resistor merupakan komponen elektronik yang memiliki dua pin dan didesain untuk mengatur tegangan listrik dan arus listrik. Resistor mempunyai nilai resistansi (tahanan) tertentu yang dapat memproduksi tegangan listrik di antara kedua pin dimana nilai tegangan terhadap resistansi tersebut berbanding lurus dengan arus yang mengalir, berdasarkan persamaan hukum Ohm:

 

Resistor digunakan sebagai bagian dari rangkaian elektronik dan sirkuit elektronik, dan merupakan salah satu komponen yang paling sering digunakan. Resistor dapat dibuat dari bermacam-macam komponen dan film, bahkan kawat resistansi (kawat yang dibuat dari paduan resistivitas tinggi seperti nikel-kromium).

Karakteristik utama dari resistor adalah resistansinya dan daya listrik yang dapat dihantarkan. Karakteristik lain termasuk koefisien suhu, derau listrik (noise), dan induktansi. Resistor dapat diintegrasikan kedalam sirkuit hibrida dan papan sirkuit cetak, bahkan sirkuit terpadu. Ukuran dan letak kaki bergantung pada desain sirkuit, kebutuhan daya resistor harus cukup dan disesuaikan dengan kebutuhan arus rangkaian agar tidak terbakar.

Cara membaca nilai resistor :

1. Dua pita pertama menentukan nilai dari resistansi

2. Pita ketiga menentukan faktor pengali, yang akan memberikan nilai resistansi.

3. Dan terakhir, pita keempat menentukan nilai toleransi.

5. Transistor NPN

Transistor adalah alat semikonduktor yang dipakai sebagai penguat, sebagai sirkuit pemutus dan penyambung arus (switching), stabilisasi tegangan, dan modulasi sinyal. Transistor dapat berfungsi semacam kran listrik, di mana berdasarkan arus inputnya (BJT) atau tegangan inputnya (FET), memungkinkan pengaliran listrik yang sangat akurat dari sirkuit sumber listriknya.

Pada umumnya, transistor memiliki 3 terminal, yaitu Basis (B), Emitor (E) dan Kolektor (C). Tegangan yang di satu terminalnya misalnya Emitor dapat dipakai untuk mengatur arus dan tegangan yang lebih besar daripada arus input Basis, yaitu pada keluaran tegangan dan arus output Kolektor.

Transistor merupakan komponen yang sangat penting dalam dunia elektronik modern. Dalam rangkaian analog, transistor digunakan dalam amplifier (penguat). Rangkaian analog melingkupi pengeras suara, sumber listrik stabil (stabilisator) dan penguat sinyal radio. Dalam rangkaian-rangkaian digital, transistor digunakan sebagai saklar berkecepatan tinggi. Beberapa transistor juga dapat dirangkai sedemikian rupa sehingga berfungsi sebagai logic gate, memori dan fungsi rangkaian-rangkaian lainnya.

6. LED 

Light Emitting Diode atau sering disingkat dengan LED adalah komponen elektronika yang dapat memancarkan  cahaya monokromatik ketika diberikan tegangan maju. LED merupakan keluarga Dioda yang terbuat dari bahan semikonduktor. Warna-warna Cahaya yang dipancarkan oleh LED tergantung pada jenis bahan semikonduktor yang dipergunakannya. LED juga dapat memancarkan sinar inframerah yang tidak tampak oleh mata seperti yang sering kita jumpai pada Remote Control TV ataupun Remote Control perangkat elektronik lainnya. Bentuk LED mirip dengan sebuah bohlam (bola lampu) yang kecil dan dapat dipasangkan dengan mudah ke dalam berbagai perangkat elektronika. Berbeda dengan Lampu Pijar, LED tidak memerlukan pembakaran filamen sehingga tidak menimbulkan panas dalam menghasilkan cahaya.  Oleh karena itu, saat ini LED (Light Emitting Diode) yang bentuknya kecil telah banyak digunakan sebagai lampu penerang dalam LCD TV yang mengganti lampu tube. LED hanya akan memancarkan cahaya apabila dialiri tegangan maju (bias forward) dari Anoda menuju ke Katoda. 

Keanekaragaman Warna pada LED tersebut tergantung pada wavelength (panjang gelombang) dan senyawa semikonduktor yang dipergunakannya. Berikut ini adalah Tabel Senyawa Semikonduktor yang digunakan untuk menghasilkan variasi warna pada LED :

Bahan Semikonduktor

Wavelength

Warna

Gallium Arsenide (GaAs)

850-940nm

Infra Merah

Gallium Arsenide Phosphide (GaAsP)

630-660nm

Merah

Gallium Arsenide Phosphide (GaAsP)

605-620nm

Jingga

Gallium Arsenide Phosphide Nitride (GaAsP:N)

585-595nm

Kuning

Aluminium Gallium Phosphide (AlGaP)

550-570nm

Hijau

Silicon Carbide (SiC)

430-505nm

Biru

Gallium Indium Nitride (GaInN)

7. Buzzer

Merupakan komponen elektronika yang berfungsi untuk mengubah getaran listrik menjadi getaran suara. Pada dasarnya prinsip kerja buzzer hampir sama dengan loud speaker, jadi buzzer juga terdiri dari kumparan yang terpasang pada diafragma dan kemudian kumparan tersebut dialiri arus sehingga menjadi elektromagnet, kumparan tadi akan tertarik ke dalam atau keluar, tergantung dari arah arus dan polaritas magnetnya, karena kumparan dipasang pada diafragma maka setiap gerakan kumparan akan menggerakkan diafragma secara bolak-balik sehingga membuat udara bergetar yang akan menghasilkan suara.

 8. Relay

Relay adalah Saklar (Switch) yang dioperasikan secara listrik dan merupakan komponen Electromechanical (Elektromekanikal) yang terdiri dari 2 bagian utama yakni Elektromagnet (Coil) dan Mekanikal (seperangkat Kontak Saklar/Switch). Relay menggunakan Prinsip Elektromagnetik untuk menggerakkan Kontak Saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi. Pada dasarnya, Relay terdiri dari 4 komponen dasar  yaitu :

  1. Electromagnet (Coil)

  2. Armature

  3. Switch Contact Point (Saklar)

  4. Spring

Berikut ini merupakan gambar dari bagian-bagian Relay :

Kontak Poin (Contact Point) Relay terdiri dari 2 jenis yaitu :

  • Normally Close (NC) yaitu kondisi awal sebelum diaktifkan akan selalu berada di posisi CLOSE (tertutup)

  • Normally Open (NO) yaitu kondisi awal sebelum diaktifkan akan selalu berada di posisi OPEN (terbuka)

Berdasarkan gambar diatas, sebuah Besi (Iron Core) yang dililit oleh sebuah kumparan Coil yang berfungsi untuk mengendalikan Besi tersebut. Berdasarkan penggolongan jumlah Pole dan Throw-nya sebuah relay, maka relay dapat digolongkan menjadi :

  • Single Pole Single Throw (SPST) : Relay golongan ini memiliki 4 Terminal, 2 Terminal untuk Saklar dan 2 Terminalnya lagi untuk Coil.

  • Single Pole Double Throw (SPDT) : Relay golongan ini memiliki 5 Terminal, 3 Terminal untuk Saklar dan 2 Terminalnya lagi untuk Coil.

  • Double Pole Single Throw (DPST) : Relay golongan ini memiliki 6 Terminal, diantaranya 4 Terminal yang terdiri dari 2 Pasang Terminal Saklar sedangkan 2 Terminal lainnya untuk Coil. Relay DPST dapat dijadikan 2 Saklar yang dikendalikan oleh 1 Coil.

  • Double Pole Double Throw (DPDT) : Relay golongan ini memiliki Terminal sebanyak 8 Terminal, diantaranya 6 Terminal yang merupakan 2 pasang Relay SPDT yang dikendalikan oleh 1 (single) Coil. Sedangkan 2 Terminal lainnya untuk Coil.

9. Logic state

Gerbang Logika (Logic Gates) adalah sebuah entitas untuk melakukan pengolahan input-input yang berupa bilangan biner (hanya terdapat 2 kode bilangan biner yaitu, angka 1 dan 0) dengan menggunakan Teori Matematika Boolean sehingga dihasilkan sebuah sinyal output yang dapat digunakan untuk proses berikutnya.  

Input dan Output pada Gerbang Logika hanya memiliki 2 level. Kedua Level tersebut pada umumnya dapat dilambangkan dengan :

  • HIGH (tinggi) dan LOW (rendah)

  • TRUE (benar) dan FALSE (salah)

  • ON (Hidup) dan OFF (Mati)

  • 1 dan 0

 7 jenis gerbang logika :

  • Gerbang AND : Apabila semua / salah satu input merupakan bilangan biner (berlogika) 0, maka output akan menjadi 0. Sedangkan jika semua input adalah bilangan biner (berlogika) 1, maka output akan berlogika 1.

  • Gerbang OR  : Apabila semua / salah satu input merupakan bilangan biner (berlogika) 1, maka output akan menjadi 1. Sedangkan jika semua input adalah bilangan biner (berlogika) 0, maka output akan berlogika 0.

  • Gerbang NOT : Fungsi Gerbang NOT adalah sebagai Inverter (pembalik). Nilai output akan berlawanan dengan inputnya.

  • Gerbang NAND : Apabila semua / salah satu input bilangan biner (berlogika) 0, maka outputnya akan berlogika 1. Sedangkan jika semua input adalah bilangan biner (berlogika) 1, maka output akan berlogika 0.

  • Gerbang NOR : Apabila semua / salah satu input bilangan biner (berlogika) 1, maka outputnya akan berlogika 0. Sedangkan jika semua input adalah bilangan biner (berlogika) 0, maka output akan berlogika 1.

  • Gerbang XOR : Apabila input berbeda (contoh : input A=1, input B=0) maka output akan berlogika 1. Sedangakan jika input adalah sama, maka output akan berlogika 0.

  • Gerbang XNOR : Apabila input berbeda (contoh : input A=1, input B=0) maka output akan berlogika 0. Sedangakan jika input adalah sama, maka output akan berlogika 1.

10. OPAMP

Operational Amplifier atau lebih dikenal dengan istilah Op-Amp adalah salah satu dari bentuk IC Linear yang berfungsi sebagai Penguat Sinyal listrik. Sebuah Op-Amp terdiri dari beberapa Transistor, Dioda, Resistor dan Kapasitor yang terinterkoneksi dan terintegrasi sehingga memungkinkannya untuk menghasilkan Gain (penguatan) yang tinggi pada rentang frekuensi yang luas. Dalam bahasa Indonesia, Op-Amp atau Operational Amplifier sering disebut juga dengan Penguat Operasional. Terminal yang terdapat pada Simbol Op-Amp (Operational Amplifier/penguat operasional) diantaranya adalah :

  1. Masukan non-pembalik (Non-Inverting) +
  2. Masukan pembalik (Inverting) –
  3. Keluaran Vout
  4. Catu daya positif +V
  5. Catu daya negatif -V
Karakteristik Faktor Penguat atau Gain pada Op-Amp pada umumnya ditentukan oleh Resistor Eksternal yang terhubung diantara Output dan Input pembalik (Inverting Input). Konfigurasi dengan umpan balik negatif (Negative Feedback) ini biasanya disebut dengan Closed-Loop configuration atau Konfigurasi Lingkar Tertutup.  Sedangkan pada Konfigurasi Lingkar Terbuka atau Open-Loop Configuration, besar penguatannya adalah tak terhingga (∞) sehingga besarnya tegangan output hampir atau mendekati tegangan Vcc.

11. Generator DC

Generator DC atau generator arus searah (DC) adalah salah satu jenis mesin listrik, dan fungsi utama mesin generator DC adalah mengubah energi mekanik menjadi listrik DC (arus searah). Proses perubahan energi menggunakan prinsip gaya gerak listrik yang diinduksi secara energi.Generator DC terdiri dua bagian, yaitu stator, yaitu bagian mesin DC yang diam, dan bagian rotor, yaitu bagian mesin DC yang berputar. Bagian stator terdiri dari: rangka motor, belitan stator, sikat arang, bearing dan terminal box. Sedangkan bagian rotor terdiri dari: komutator, belitan rotor, kipas rotor dan poros rotor. Prinsip kerja suatu generator arus searah berdasarkan hukum Faraday :

Dengan lain perkataan, apabila suatu konduktor memotong garis-garis fluksi magnetik yang berubah-ubah, maka GGL akan dibangkitkan dalam konduktor itu. Jadi syarat untuk dapat dibangkitkan GGL adalah : 

  • harus ada konduktor ( hantaran kawat ) 

  • harus ada medan magnetik

  • harus ada gerak atau perputaran dari konduktor dalam medan, atau ada fluksi yang berubah yang memotong konduktor itu.

Komutator berfungsi sebagai saklar, yaitu untuk menghubung singkatkan kumparan jangkar. Komutator berupa cincin belah yang dipasang pada ujung kumparan jangkar.Bila kumparan jangkar berputar, maka cincin belah ikut berputar. Karena kumparan berada dalam medan magnet, akan timbul tegangan bolak balik sinusoidal. Bila kumparan telah berputar setengah putaran, sikat akan menutup celah cincin sehingga tegangan menjadi nol. Karena cincin berputar terus, maka celah akan terbuka lagi dan timbul tegangan lagi. Bila perioda tegangan sama dengan perioda perputaran cincin, tegangan yang timbul adalah tegangan arus searah gelombang penuh.

 12. Sensor Suara

Sensor Suara adalah sensor yang memiliki cara kerja merubah besaran suara menjadi besaran listrik. Pada dasarnya prinsip kerja pada alat ini hampir mirip dengan cara kerja sensor sentuh pada perangkat seperti telepon genggam, laptop, dan notebook. Sensor ini bekerja berdasarkan besar kecilnya kekuatan gelombang suara yang mengenai membran sensor yang menyebabkan bergeraknya membran sensor yang memiliki kumparan kecil dibalik membran tersebut naik dan turun. Kecepatan gerak kumparan tersebut menentukan kuat lemahnya gelombang listrik yang dihasilkannya.

Grafik Sound Sensor

Rangkaian Detektor Inverting dengan Vref = 0

Rangkaian detektor inverting dengan tegangan input Vi berupagelombang segitiga dan tegangan referensi Vref = 0 Volt adalah seperti gambar 75

Dengan menggunakan persamaan (1) maka Vi = V2 dan Vref =V1 sehingga bentuk gelombang tegangan output Vo (Vo = ±Vsaturasi = AoL(V1 - V2) ) yang dihasilkan adalah seperti gambar

Adapun kurva karakteristik Input-Ouput (I-O) adalah seperti gambar. Dengan Vi > 0 (artinya Vi > 65 µ Volt untuk rangkaian detektor dengan ±Vs = ±15 Volt) maka Vo = -Vsat dan sebaliknya bila Vi < 0 (artinya Vi < -65µVolt untuk rangkaian detektor dengan ±Vs = ±15 Volt) maka Vo = +Vsat


PILIHAN GANDA

1. Detektor inverting adalah rangkaian yang menghasilkan output yang ________ dari inputnya.
a. berlawanan polaritas
b. sama polaritas
c. berkebalikan fase
d. sama fase

2. Jika input detektor inverting memiliki tegangan sebesar -2V, maka outputnya akan memiliki tegangan sebesar ___________.
a. -2V
b. 2V
c. 0V
d. tergantung pada hambatan yang digunakan

3. Dalam detektor inverting dengan Vref = 0, tegangan referensi adalah ___________.
a. 0V
b. -1V
c. 1V
d. tidak dapat ditentukan hanya dengan informasi yang diberikan

4. Jika input detektor inverting memiliki tegangan sebesar 1V dan hambatan umpan baliknya adalah 10kΩ, maka outputnya akan memiliki tegangan sebesar ___________.
a. 0V
b. 1V
c. -1V
d. tidak dapat ditentukan hanya dengan informasi yang diberikan

5. Detektor inverting dengan Vref = 0 dapat digunakan untuk ____________.
a. menguatkan sinyal listrik
b. mengubah sinyal AC menjadi DC
c. mengubah sinyal DC menjadi AC
d. mengalihkan arus listrik

PROBLEM

1. Masalah: 
Tidak ada tegangan referensi yang diberikan dalam detektor inverting dengan Vref = 0.
Jawaban: 
Tegangan referensi pada detektor inverting dengan Vref = 0 sebenarnya adalah 0V. Hal ini berarti bahwa detektor inverting membandingkan tegangan inputnya dengan tegangan referensi 0V untuk menghasilkan output yang berlawanan polaritas dengan inputnya.


2. Masalah: 
Tidak ada penjelasan mengenai fungsi detektor inverting dengan Vref = 0.
Jawaban: 
Detektor inverting dengan Vref = 0 digunakan untuk mengubah sinyal AC (Alternating Current) menjadi sinyal DC (Direct Current). Dengan membandingkan tegangan input dengan tegangan referensi 0V, detektor inverting menghasilkan output dengan polaritas yang berlawanan dari inputnya, sehingga menghasilkan sinyal DC yang dapat digunakan untuk berbagai aplikasi elektronik.


3. Masalah: 
Tidak ada penjelasan mengenai pengaruh hambatan umpan balik pada output detektor inverting.
Jawaban: 
Hambatan umpan balik pada detektor inverting mempengaruhi level amplifikasi sinyal. Semakin besar nilainya, semakin besar amplifikasi sinyal yang dihasilkan. Namun, perlu diperhatikan bahwa hambatan umpan balik yang terlalu besar dapat menyebabkan penurunan responsivitas dan kecepatan respon detektor inverting.


4. Masalah: 
Tidak ada pembahasan mengenai toleransi tegangan pada detektor inverting dengan Vref = 0.
Jawaban: 
Toleransi tegangan pada detektor inverting dengan Vref = 0 dapat menjadi penting dalam mendapatkan hasil yang akurat. Jika tegangan input berada di luar kisaran toleransi yang ditentukan, output detektor inverting mungkin tidak sesuai dengan yang diharapkan. Oleh karena itu, penting untuk memperhatikan toleransi tegangan yang disebutkan dalam spesifikasi detektor inverting.

4. Prinsip Kerja [kembali]

  • PROSEDUR PERCOBAAN

1. Siapkan komponen yang dibutuhkan
2. Letakkansemua komponen sesuai dengan gambar dibawah
3. Selanjutnya hubungkan ke motor
4. Letakan juga sensor suara,sensor magnetic,sensor infra red
5. Setelah semua komponen tersusun dan terhubung,
play kan simulasinya
6. Jika benar maka simulasi bisa dibuat aplikasinya

Alat Pendeteksi benda hilang dari logam ini terdiri dari 3 sensor yaitu sensor infrared, sound, dan magnetik. Secara umum sensor magnetik dan sensor infrared akan mendeteksi adanya sehingga buzzer berbunyi, buzzer berbunyi akan ditangkap suaranya oleh sensor suara sehingga lampu LED menyala yang menandakan bahwa telah terdeteksi logam oleh alat tersebut.

  • PRINSIP KERJA 
Sensor Infrared : saat sensor infrared mendeteksi adanya logam, maka logistate akan menjadi 1 dan sensor akan mengeluarkan tegangan dari kaki Vout sebesar 5V kemudian dilanjutkan ke kaki inverting OPAMP, karena disini OPAMP bertindak sebagai detektor inverting dengan Vref=0, maka nilai tegangan pada kaki non-inverting (referensi) akan sama dengan nol. Lalu tegangan Vout dapat dicari dengan rumus V0=AoL(V1 – V2), dimana nilai V1 adalah nilai Vref nya, didapatkan tegangan output, lalu diumpankan ke resistor lalu ke kaki base transistor. Setelah tegangan mencukupi transistor aktif, karena transistor sudah aktif maka arus akan mengalir dari power menuju relay, menuju kaki kolektor, kaki emitor, dan menuju ground. Karena arus telah mengalir ke relay maka switch relay akan tertutup sehingga arus mengalir pada loop yang menyebabkan motor bergerak dan buzzer pun berbunyi

Sensor magnetik : saat sensor magnetik meneteksi adanya logam magnet, maka logistate akan menjadi 1 dan sensor akan mengeluarkan tegangan dari kaki Vout sebesar 5V kemudian dilanjutkan ke kaki inverting OPAMP, karena disini OPAMP bertindak sebagai detektor inverting dengan Vref=0, maka nilai tegangan pada kaki non-inverting (referensi) akan sama dengan nol. Lalu tegangan Vout dapat dicari dengan rumus V0=AoL(V1 – V2), dimana nilai V1 adalah nilai Vref nya, didapatkan tegangan output, lalu diumpankan ke resistor lalu ke kaki base transistor. Setelah tegangan mencukupi transistor aktif, karena transistor sudah aktif maka arus akan mengalir dari power menuju relay, menuju kaki kolektor, kaki emitor, dan menuju ground. Karena arus telah mengalir ke relay maka switch relay akan tertutup sehingga arus mengalir pada loop yang menyebabkan motor bergerak dan buzzer pun berbunyi

Sensor suara : pada saat buzzer tersebut telah mngeluarkan suara, maka sensor sound logistate akan menjadi 1 dan sensor akan mengeluarkan tegangan dari kaki Vout sebesar 5V kemudian dilanjutkan ke kaki inverting OPAMP, karena disini OPAMP bertindak sebagai detektor inverting dengan Vref=0, maka nilai tegangan pada kaki non-inverting (referensi) akan sama dengan nol. Lalu tegangan Vout dapat dicari dengan rumus V0=AoL(V1 – V2), dimana nilai V1 adalah nilai Vref nya, didapatkan tegangan output, lalu diumpankan ke resistor lalu ke kaki base transistor. Setelah tegangan mencukupi transistor aktif, karena transistor sudah aktif maka arus akan mengalir dari power menuju relay, menuju kaki kolektor, kaki emitor, dan menuju ground. Karena arus telah mengalir ke relay maka switch relay akan tertutup sehingga arus mengalir pada loop yang menyebabkan motor bergerak, dan lampu LED biru aktif pertanda bahwa alat tersebut telah mendeteksi adanya logam yang hilang

  • Video Simulasi 

5.Download File [kembali]

- File HTML  klik disini
- Rangkaian Proteus OP AMP klik disini
- Rangkaian Proteus OP AMP (Gambar 66) klik disini
- Library Sensor Magnet  klik disini
- Library Sensor Infrared  klik disini
- Library Sensor Sound  klik disini
- Datasheet Resistor  klik disini
- Datasheet Kapasitor  klik disini
- Datasheet Potensiometer  klik disini
- Datasheet Baterai  klik disini
- Datasheet Relay  klik disini
- Datasheet NPN  klik disini
- Datasheet OpAmp   klik disini
- Datasheet Motor  klik disini
- Datasheet LED klik disini
- Datasheet Diode klik disini
- Datasheet Voltmeter klik disini
- Datasheet Magnetic Reed switch sensor klik disini
- Datasheet Sound Sensor Klik Disini
- Datasheet Infrared sensor klik disini
- Datasheet LDR klik disini
- Datasheet LoadCell klik disini
- Video Penjelasan  klik disini


 

[menuju awal]

 

Komentar

Postingan populer dari blog ini

Modul 1 Gerbang Logika Dasar & Monostable Multivibrator

Mikroprosesor - Rangkaian DAC 0808 (Gambar 20)